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Abstract. Thermodynamical properties of hot and dense nuclear matter are analyzed and compared for
different equations of state (EoS). It is argued that the softest point of the equation of state and the
strangeness separation on the phase boundary can manifest themselves in observables. The influence of the
EoS and the order of the phase transition on the expansion dynamics of nuclear matter and strangeness
excitation function is analyzed. It is shown that the bulk properties of the strangeness production in A–A
collisions depend only weakly on the particular form of the EoS. The predictions of different models are
related with experimental data on strangeness production.

1 Introduction

The quest for the deconfinement transition, the phase tran-
sition from a confined hadronic phase to a deconfined
quark–gluon phase (the so-called quark–gluon plasma,
QGP), remains a major challenge in strong interaction
physics [1]. Over the past two decades a lot of effort has
gone into the exploration of this transition and its pos-
sible manifestations in relativistic heavy ion collisions, in
neutron stars as well as in the early universe. Relativistic
heavy ion collisions offer a unique opportunity to reach
states with temperatures and energy densities exceeding
the critical values, Tc ∼ 170 MeV and εc ∼ 0.6 GeV/fm3,
specific for the deconfinement phase transition [2]. Thus,
it is likely that color degrees of freedom play an important
role already at SPS and RHIC energies [3]. Various signals
for the formation of a quark–gluon plasma in such colli-
sions have been discussed and probed in experiments [1,4].

Enhanced production of strangeness relative to proton–
proton and proton–nucleus collisions was one of the conjec-
ture signals of the quark–gluon plasma formation in heavy
ion collisions [5]. The original idea behind the strangeness
enhancement is that strange and antistrange quarks are
easily created in a quark–gluon plasma, while in the had-
ronic phase strangeness production is suppressed. The
dominant reaction in the plasma is gg → ss̄. Furthermore,
since the strange quark mass is not larger than Tc, one
expects the strange degrees of freedom to equilibrate in
the quark–gluon plasma. Although a heavy ion collision
at high energies is a highly non-equilibrium process, the
hadron yields (including strange particles) measured in the
energy range from SIS to RHIC [6–10] are remarkably well
described in the thermal model assuming chemical equi-
librium at freeze-out. This indicates that collective effects

play an important role in the production of strangeness.
On the other hand, elaborate microscopic transport models
do not provide a quantitative explanation of the excitation
functions for strange particles in this energy range. In the
hadron string dynamics model [11] one finds a too small
K+/π+ ratio around AGS energies, while in RQMD [12]
the yield is overestimated at SIS and too small at SPS
energies.

The aim of this paper is to explore global effects of
strangeness production in hot and dense nuclear matter
within a collective approach. Our starting point is an equa-
tion of state (EoS) with a deconfinement phase transition.
Since strangeness is conserved at the time scales relevant
for heavy ion collisions, a strangeness chemical potential is
introduced. We examine various phenomenological models
for the equation of state, which differ in the order of the de-
confinement phase transition: a first order transition (the
two-phase bag model), a crossover-type transition (the sta-
tistical mixed-phase model) and no phase transition (pure
hadronic models). The consequences of strangeness sepa-
ration and softening of the equation of state are discussed.
Furthermore, the manifestation of the order of the decon-
finement phase transition in the expansion dynamics and
the bulk strangeness production is studied. The predic-
tions obtained with different equations of state are related
with experimental excitation functions for relative strange
particle abundances.

2 Modeling the equation of state
of strongly interacting matter

The EoS of strongly interacting matter can in general be
obtained by first principle calculations within lattice gauge
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theory [13]. The thermodynamics and the order of the
phase transition in QCD are rather well established for two
and three light quark flavors in lattice calculations. How-
ever, the physically relevant situation of two light (u, d)
and a heavy (s) quark is still not well described within the
lattice approach. In particular, the existence of a phase
transition and its order in 2 + 1 flavor QCD is not yet
known. In addition most of the lattice calculations are
performed for vanishing net baryon number density. Only
recently, first results on the EoS with non-zero baryon
chemical potential have been obtained on the lattice [14].
However, these studies have so far been performed with
large quark masses which distort the physical EoS. Thus,
lattice results can still not be used directly in physical
applications.

Lacking lattice QCD results for the EoS at finite baryon
density nB with physically relevant values of the quark
masses, a common approach is to construct a phenomeno-
logical equation of state for strongly interacting matter.
This EoS should be constrained by existing lattice results
and should also reproduce the two-phase structure of QCD.
Here we construct different models for the QCD thermo-
dynamics and study their physical implications with par-
ticular emphasis on strangeness production and evolution
in heavy ion collisions.

A recent analysis of the lattice EoS [15,16], shows that
in the low temperature phase, hadrons and resonances are
the relevant degrees of freedom. The hadron resonance gas,
with a modified mass spectrum to account for the unphys-
ical values of the quark masses used in the lattice calcu-
lations, was shown to reproduce the bulk thermodynamic
properties of QCD, obtained on the lattice with different
numbers of quark flavors as well as at finite and vanishing
net baryon density [15,16].

Lattice calculations show that, at very large tempera-
ture, the thermodynamical observables approach the
Stefan–Boltzmann limit of an ideal gas of quarks and
gluons, both at finite as well as vanishing net baryon den-
sity. The remaining ∼ 20% discrepancy at T > 2Tc is un-
derstood by systematic contributions in a self-consistent
implementation of quasiparticle masses in the HTL-re-
summed perturbative QCD [17]. To describe the thermo-
dynamics near the phase transition additional model as-
sumptions are necessary [18,19].

From the above discussion it is clear that the most
straightforward model for the EoS would be a non-inter-
acting hadron resonance gas in the low temperature phase
and ideal quark–gluon plasma in the color deconfined phase.
These phases are matched at the phase transition bound-
ary by means of the Gibbs phase equilibrium conditions.
By construction, this approach yields a first order phase
transition. Such an EoS with strange degrees of freedom
has frequently been used in the literature [20–25] and is also
a standard input in hydrodynamic simulations of heavy ion
collisions [26,27]. However, in order to obtain a reasonable
phase diagram one has to include short-range repulsive in-
teractions between hadronic constituents. In general this
can be realized by introducing short-range repulsion in a
thermodynamically consistent approach [28–31].

We note that according to the Gibbs phase rule [32] the
number of thermodynamic degrees of freedom that may be
varied without destroying the equilibrium of a mixture of
r phases, with nc conserved charges is N = nc +2− r. For
the hadron–quark deconfinement transition under consid-
eration r = 2. If the baryon number is the only conserved
quantity, nc = 1 and N = 1. Thus, the phase boundary
is one-dimensional, i.e. a line. The Maxwell construction
for a first order phase transition corresponds just to this
case, r = 2 and nc = 1. When both the baryon number
and strangeness are conserved (nc = 2), one has N = 2
and therefore the phase boundary is in general a surface.
In such a system, a standard Maxwell construction is not
possible [33].

To account for the uncertainties in the order of the
phase transition in 2 + 1 flavor QCD and also for the de-
viation of the equation of state from an ideal gas near
the deconfinement transition we employ the EoS of the
mixed-phase model [28, 29]. In this model it is assumed
that unbound quarks and gluons may coexist with hadrons
forming a homogeneous mixture. This model is thermody-
namically consistent and reproduces the lattice EoS ob-
tained in the pure gauge theory as well as in two flavor
QCD. Furthermore, the order of the phase transitions in
the mixed-phase model depends on the strength of the
interaction between the phases. In this approach we can
study the importance of the order of the phase transition
for the strangeness production and the evolution of heavy
ion collisions.

In the following we discuss first the basic thermody-
namical properties of these different models of the EoS and
indicate relevant differences in their predictions.

2.1 Two-phase bag model

In the two-phase (2P) model [34], the deconfinement phase
transition is determined by matching the EoS of a relativis-
tic gas of hadrons and resonances, with repulsive interac-
tions at short distances, to that of an ideal gas of quarks
and gluons. The change in vacuum energy in the plasma
phase is parameterized by a bag constant B. We work in
the grand canonical ensemble and account for all hadrons
with mass mj < 1.6 GeV, including the strange particles
and resonances with strangeness sj = ±1,±2,±3. The
density of particle species j is then

nj(T, µj) ≡ nj(T, µB , µS) = v nid
j (T, µB , µS)

=
v gj

2π2

∫ ∞

0
dk k2 fj(k, T, µB , µS) , (1)

where

fj(k, T, µB , µS)

=


exp




√
k2 +m2

j − bjµB − sjµS

T


 ± 1




−1

(2)

is the momentum distribution function for fermions (+)
and bosons (−) while gj is the spin–isospin degeneracy



V.D. Toneev et al.: Strangeness production in nuclear matter and expansion dynamics 401

factor. The chemical potential µj is related to the baryon
(µB) and strangeness (µS) chemical potentials:

µj = bj µB + sj µS , (3)

where bj and sj are the baryon number and strangeness
of the particle. The quantity nid

j corresponds to the num-
ber density of an ideal point-like hadron gas (IdHG). The
factor

v ≡ v(T, µB , µS) = 1/


1 +

∑
j

v0j n
id
j (T, µB , µS)


 (4)

reduces the volume available for hadrons due to their short
range repulsion determined by the eigenvolume v0j =
(1/2)(4π/3)(2r0j)3 [32]. We choose the effective interac-
tion radius r0j = 0.45 fm for all hadrons. Following (1),
the baryon density and strangeness in the hadronic phase
can be expressed as

nH
B =

∑
j∈h

bj nj(T, µB , µS) , (5)

nH
S =

∑
j∈h

sj nj(T, µB , µS) , (6)

where the sum is taken over all hadrons and resonances.
Similarly, the energy density of species j is given by

εj(T, µB , µS) = v εidj (T, µB , µS)

=
v gj

2π2

∫ ∞

0
dk k2

√
k2 +m2

j fj(k, T, µB , µS) . (7)

In early studies [34,35], the excluded volume correction
v was implemented in the same way for all thermodynamic
quantities of the hadron gas, including the pressure

pH(T, µB , µS) =
∑
j∈h

pj(T, µB , µS) , (8)

where the partial pressures are given by

pj(T, µB , µS) = v pid
j (T, µB , µS)

=
v gj

6π2

∫ ∞

0
dk

k4√
k2 +m2

j

fj(k, T, µB , µS) . (9)

However, this expansion for the pressure is not thermody-
namically consistent with the charge (5) and (6) as well
as the energy density (7). In [36] it was shown that it is
possible to account for a thermodynamically consistent im-
plementation of the excluded volume corrections. In this
approach the pressure is given by that of an ideal gas with
modified chemical potentials

pH(T, µB , µS) =
∑
j∈h

pid
j (T, µ̃j) , (10)

where

µ̃j = bj µB + sj µS − v0j p
H(T, µB , µS) . (11)

The remaining thermodynamic quantities are obtained
with the excluded volume correction given above by taking
the corresponding derivatives of the pressure. Thus, in this
approach all fundamental thermodynamic relations are ful-
filled [36]. We shall refer to (8) and (9) and to (10) and (11)
as the two-phase thermodynamically inconsistent (2PIN)
and consistent (2PC) model, respectively. Note that such
an equation of state may violate causality at high densi-
ties, because an extended rigid body is incompatible with
the basic principles of relativity.

The QGP phase is described as a gas of non-interacting
point-like quarks, antiquarks and gluons. The non-pertur-
bative effects associated with confinement are described
by the constant vacuum energy B. The pressure in the
plasma is then given by

pQ(T, µB , µS) = pg(T ) +
∑
j∈q

pid
j (T, µB , µS) −B , (12)

where for the gluon

pg(T ) =
ggπ2

90
T 4 (gg = 16) (13)

and the quark pressure is obtained from (9) for the u, d, s
quarks and antiquarks. We use the quark masses mu =
md = 5 MeV and ms = 150 MeV and the bag constant
B = (235 MeV)4 which yields a transition temperature
Tc ≈ 160 MeV in agreement with lattice calculations at
nB = 0 [13]. The energy density of the plasma phase is

εQ(T, µB , µS) = εg(T ) +
∑
j∈q

εidj (T, µB , µS) +B , (14)

where the gluon contribution is given by

εg(T ) = 3 pg(T ) =
ggπ2

30
T 4 (15)

and that of quark species j is obtained from (7) with v = 1.
Analogously to (5) and (6) the densities of the conserved
charges in the QGP phase are

nQ
B =

∑
j∈q

bj n
id
j (T, µB , µS) , (16)

nQ
S =

∑
j∈q

sj n
id
j (T, µB , µS) . (17)

The equilibrium between the plasma and the hadronic
phase is determined by the Gibbs conditions for ther-
mal (TQ = TH), mechanical (pQ = pH) and chemical
(µQ

B = µH
B , µ

Q
S = µH

S ) equilibrium. At a given temper-
ature T and baryon chemical potential µB the strange
chemical potential µS is obtained by requiring that the
net strangeness of the total system vanishes. Thus, for the
total baryon density nB the phase equilibrium requires
that

pH(T, µB , µS) = pQ(T, µB , µS) , (18)

nB = α nQ
B(T, µB , µS) + (1 − α) nH

B (T, µB , µS) ,(19)
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0 = α nQ
S (T, µB , µS) + (1 − α) nH

S (T, µB , µS) , (20)

where α = VQ/V is the fraction of the volume occupied by
the plasma phase. The boundaries of the coexistence region
are found by putting α = 0 (the hadron phase boundary)
and α = 1 (the plasma boundary).

As mentioned above, the Maxwell construction is not
appropriate in a system where both baryon number and
strangeness are conserved. To illustrate this, we first ana-
lyze an approximate form of (17) for strangeness conserva-
tion. We retain only the main terms and drop those with
|sj | > 1:

α (ns−ns̄) = (1−α) (nK +nΛ̄+nΣ̄−nK̄ −nΛ−nΣ) . (21)

In the Boltzmann approximation the densities may be com-
puted analytically

nid
j ≈ nB

j = gj

(
T 3

2π2

) (mj

T

)2
K2

(mj

T

)
exp

(µj

T

)

≡ gj

(
T 3

2π2

)
Wj exp

(µj

T

)
, (22)

and the strangeness chemical potential is obtained as [36]

µS =

T

2
ln

3αWs + v(1 − α)
(
WK e− µB

3T + (WΛ + 3WΣ)e
2µB
3T

)
3αWs + v(1 − α)

(
WK e

µB
3T + (WΛ + 3WΣ)e− 2µB

3T

)
+
µB

3
. (23)

It is seen that at the plasma boundary (α = 1) µS = µB/3
while µS �= µB/3 at the hadron boundary (α = 0). This im-
plies that not only µS but also µB and the pressure change
along isotherms in the coexistence region. Hence, the stan-
dard Maxwell construction, which interpolates the densi-
ties linearly between the pure phases, is not adequate. The
equations for phase equilibrium (18)–(20) must be solved
to obtain µS and µB at every point in the coexistence
region.

When two phases coexist, the system is in general not
homogeneous as the phases occupy separate domains in
space. We do not explicitly account for such a domain
structure nor for a possible surface energy contribution to
the equation of state. The only consequence of the phase
separation in these calculations is that the interactions
between particles in the plasma and hadronic phase are
neglected. This is different in the statistical mixed phase
model discussed in the next section.

The solution of the Gibbs conditions (18)–(20) is shown
in Fig. 1 for the plasma and hadron phase pressure versus
µ4

B at fixed T = 80 MeV and µS = µB/3. The crossing of
the quark and hadronic pressure corresponds to the tran-
sition point at the plasma boundary. In this special case
the condition µS = µB/3 guarantees strangeness neutral-
ity. In general, however, for α �= 1, µS must be chosen
such that the strangeness of the total system of quarks

Fig. 1. Pressure versus baryon chemical potential for fixed T =
80 MeV and for µS = µB/3. The thin line is the hadronic and
the thick line the quark phase in the 2PC model. The dashed-
dotted (1) line and dashed line are ideal gas model results
without and with repulsion in the 2PIN model, respectively.
The line (2) is obtained as line (1) but with fewer hadronic
resonances. The line (3) is calculated within the mean-field
approximation of the Zimanyi model [37] (see text)

and hadrons vanishes. This requires an iterative solution
of (18)–(20). Away from the transition point, the system is
in the phase with higher pressure p (lower free energy). Fig-
ure 1 also shows that there is no deconfinement transition
if the hadronic phase is described as a gas of point-like
particles [34]. The situation is not improved by includ-
ing more resonances. On the contrary, the larger the set
of hadronic resonances is, the higher is the pressure at a
given baryon chemical potential. However, the inclusion of
repulsive interactions between hadrons leads to a reduc-
tion of the hadron pressure pH at fixed baryon chemical
potential. Consequently, a short-range repulsion between
hadrons stabilizes the quark–gluon plasma at high densi-
ties.

The resulting phase boundaries in the T–µ plane are
shown in Fig. 2. The difference in µB at the phase bound-
aries described by (18)–(20) is small while for the strange
chemical potential µS it is more noticeable. It is natural to
expect that in the high temperature plasma µS ≈ µB/3.
On the other hand, in the hadronic phase and at low tem-
peratures, where strangeness is carried mostly by kaons
and Λ-hyperons, the strange chemical potential is roughly
approximated by µS ≈ 0.5 (µB +mK −mΛ) ≈ 550 MeV.
Both these expectations are in agreement with our nu-
merical results. Nevertheless, also in the high temperature
hadronic phase the strange chemical potential exhibits an
approximately linear dependence on the baryon chemical
potential.

In Figs. 2 and 3, the resulting phase diagrams are shown
in the T–µB and T–µS as well as T–nB planes. The role of
thermodynamical consistency is particularly evident in the
T–nB plane. As seen in Fig. 3, the baryon density nB at the
plasma boundary is increased while it is slightly decreased
at the hadron side in the 2PC model as compared with the
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Fig. 2. The phase diagram in the T–µB (marked by B) and in the T–µS (marked by S) plane for the 2PC and 2PIN models.
The plasma and hadron boundaries are shown by full and dashed lines, respectively. The dotted lines are the approximate
results obtained with µS = 0 and with µS from (23)

Fig. 3. The phase diagram in the (T–nB) plane for 2PC (full
lines) and 2PIN (dashed lines) models

2PIN approach. Consequently, the range of the coexistence
region grows from ∼ (4 ÷ 7.5)n0 to ∼ (3.5 ÷ 10)n0.

Thermodynamical properties and the differences be-
tween the two-phase bag models are shown in Figs. 4 and
5. In both cases the baryon and strange chemical poten-
tials are continuous when crossing the phase boundaries.
This guarantees that the system is chemically stable. De-
manding the conservation of strangeness in each phase
separately [20] would results in a discontinuity in µS . In
contrast to the case with only one conserved charge, the
chemical potentials are not necessary constant within the
Gibbs coexistence region. Depending on the values of µ at
the hadronic and plasma boundaries (see Fig. 2), the chem-
ical potentials (in particular µS) can be either increasing

or decreasing functions of nB . Although this change is not
large, it influences the strangeness separation in the phase
coexistence region.

The energy density is seen in Figs. 4 and 5 to be a
monotonously increasing function of nB in both models.
The pressure is also continuous within 2PC model and is
higher than in the 2PIN approach. In addition, in the latter
model the pressure also suffers a jump at the boundary
of the hadronic phase, which increases with decreasing
temperature. Such an EoS would lead to a mechanical
instability of the hydrodynamic flow. As seen in Figs. 4 and
5, the changes in pressure across the coexistence region are
quite small. Consequently, the system expands very slowly.
This is a specific feature expected for the systems with a
first order phase transition.

We stress that there are at least two problems, which
show up when the EoS discussed above is employed in hy-
drodynamic calculations. First, as shown in [36,38] causal-
ity is violated at densities nB � 3.5n0. Second, the ideal
gas model with an excluded volume correction does not
reproduce the saturation properties of nuclear matter. An
attempt to combine the excluded volume correction with
a mean-field treatment of the hadronic interactions re-
sulted in an incompressibility parameter which is too large:
K ≥ 550 MeV [36].

2.2 Statistical mixed-phase model

The mixed-phase (MP) model [28, 29, 39, 40] is a phe-
nomenological model of the EoS with a deconfinement
phase transition of QCD which shows a satisfactory agree-
ment with the lattice data. The underlying assumption of
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Fig. 4. Dependence of different thermodynamical quantities on the baryon density within 2PC model. The results are shown
for two different temperatures. The hadron and plasma phase boundaries are shown by dotted lines

Fig. 5. The same as in Fig. 4 but for the 2PIN model
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the MP model is that unbound quarks and gluons may co-
exist with hadrons forming a spatially homogeneous quark/
gluon–hadron phase which we call a generalized Gibbs
mixed phase. Since the mean distance between hadrons
and quarks/gluons in the mixed phase may be of the same
order as that between hadrons, the interactions between all
these constituents (unbound quarks/gluons and hadrons)
play an important role. The strength of these interactions
defines the order of the phase transition.

To find the free energy within the MP model [28, 29],
the following effective Hamiltonian, expressed in terms of
quasiparticles interacting with a density-dependent mean
field, is used:

H =
∑

i

∑
σ

∫
dr ψ+

i (r, σ) (24)

×
( √

−∇2 +m2
i + Ui(ρ)

)
ψi(r, σ) − C(ρ)V .

Here ψi(r, σ) denotes a field operator for the quasiparticle
species i characterized by the mass mi (the current masses
for quarks and gluons and the free hadron masses are used
here). The index σ accounts for spin, isospin and color
degrees of freedom. Furthermore, Ui is the mean field act-
ing on particles of type i, C(ρ) is a potential energy term,
which is needed to avoid double counting of the interaction,
and V is the volume of the system.

By requiring thermodynamical consistency [28–31] one
finds constraints on the parameters in the Hamiltonian.
The constraints follow from [28,29]〈

∂H

∂T

〉
= 0 ,

〈
∂H

∂ρi

〉
= 0 , (25)

where 〈. . . 〉 denotes the statistical average. For the Hamil-
tonian (24), these conditions reduce to

∑
i

ρi
∂Ui

∂ρj
− ∂C

∂ρj
= 0 ,

∑
i

ρi
∂Ui

∂T
− ∂C

∂T
= 0 ,(26)

which, as shown in [28,29], imply that Ui(ρ) and C(ρ) do
not explicitly depend on temperature.

We model color confinement by assuming the following
density dependence for the mean-field potential of quarks
and gluons,

Uq(ρ) = Ug(ρ) =
A

ργ
; γ > 0 , (27)

where

ρ = ρq + ρg +
∑

j

ρj = ρq + ρg +
∑

j

νj nj (28)

is the total number density of quarks and gluons in the
local rest frame and ρq and ρg are the number densities
of unbound (deconfined) quarks and gluons (ρpl ≡ ρq +
ρg), while nj is the number density of hadrons of type j
having νj number of valence quarks inside. The presence

of the total number density ρ in (27) implies interactions
between all components of the generalized Gibbs mixed
phase. The potential (27) exhibits two important limits
of QCD. For ρ → 0, the interaction potential approaches
infinity, i.e. an infinite amount of energy is necessary to
create an isolated quark or gluon. This obviously simulates
confinement of colored objects. In the opposite limit of
large energy density, ρ → ∞, we have Ug → 0 which is
consistent with asymptotic freedom.

In the description of the hadron components, the MP
model accounts not only for hadron–hadron but also for
quark/gluon–hadron interactions. The mean field acting
on the hadron species j in the MP model has two terms:

Uj = U
(h)
j + U

(pl)
j . (29)

In the limit where there are no unbounded quarks and
gluons, U (pl)

j = 0, i.e., Uj = U
(h)
j . This happens at low

densities, where colored degrees of freedom are confined in
hadrons.

Due to the constraints (26) the second term in (29) my
be written as [28]

U
(pl)
j =

νj A

ργ

(
1 − (1 − wpl)−γ

)
, (30)

where wpl = ρpl/ρ is the fraction of quark–gluon plasma
in the mixed phase.1 Thus, if Uq and Ug are known, the
thermodynamic consistency conditions (26) allow us to
unambiguously determine the correction termC(ρ) in (24).

The hadronic potential U (h)
j is described by a non-

linear mean-field model [37]

U
(h)
j = gr,j ϕ1(x) + ga,j ϕ2(y) , (31)

where gr,j > 0 and ga,j < 0 are repulsive and attractive
coupling constants, respectively.

Thermodynamic consistency implies that the functions
ϕ1(x) and ϕ2(y) depend only on the particle densities.
In [37] these functions are chosen such that

b1ϕ1 = x, −b1(ϕ2 + b2ϕ
3
2) = y , (32)

where
x =

∑
νi

gr,i ρνi , y =
∑
νi

ga,i ρνi .

and b1 and b2 are free parameters. In [37] considering a
mixture of nucleons and ∆s the model parameters were
fixed so as to reproduce the saturation properties of nu-
clear matter and the ratio of the ∆ to the nucleon cou-
pling constants. We generalize this approach by including
all hadrons in our model and assuming that the coupling
constants scale with the number of constituent quarks:

U
(h)
j = νj

(
ϕ̃1(ρ− ρpl) + ϕ̃2(ρ− ρpl)

)
, (33)

1 We note that the resulting hadron single particle potential
becomes very attractive near the plasma phase boundary, and
even diverges in the plasma phase. We do not believe that this
behavior is physical. Nevertheless, we adopt this convenient
prescription, since it does not have a noticeable effect on the
thermodynamics nor on the hydrodynamic flow.
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Fig. 6. Temperature dependence of the energy density and
pressure at vanishing total baryon density. Full and dashed
lines are the MP and 2PC model results, respectively. The
insert figure shows the reduced heat capacity

where ϕ̃1 and ϕ̃2 satisfy the equations

c1ϕ̃1 = ρ− ρpl, −c2ϕ̃2 − c3ϕ̃
3
2 = ρ− ρpl , (34)

with ρ−ρpl =
∑

νj
νjρj . The parameters in (34) are given

by [28]

c1 =
b1

(gr,j/νj)2
, c2 =

b1
(ga,j/νj)2

, c3 =
b1b2

(ga,j/νj)4

and are fixed by requiring that the properties of the ground
state (T = 0, nB = n0 ≈ 0.17 fm−3) of nuclear matter are
reproduced: i.e. a binding energy per nucleon of −16 MeV,
incompressibility of 210 MeV and vanishing pressure.

We also addressed the extension of the Zimanyi model
[37] as an interacting hadron gas (InHG) model with no
phase transition. The µB-dependence of the pressure in
this model is illustrated in Fig. 1.

The thermodynamics in the MP model is obtained from
the partition function in the standard way. The baryon and
strange chemical potentials are fixed by the baryon number
and strangeness conservation,

nB(T, µ) =
∑

j∈q,h

bj nj(T, µj) , (35)

nS(T, µ) = 0 =
∑

j∈q,h

sj nj(T, µj) , (36)

where the sum is taken over all quarks, gluons and hadrons.
The same set of hadrons and resonances is used here as in
the previous models.

As an example we quote an expression for the particle
number density,

nj(T, µj) =
gj

2π2

∫ ∞

0
dkk2 (37)

×

exp




√
k2 +m2

j − bjµB − sjµS + Uj

T


 ± 1




−1

.

In the energy density and pressure there are further terms,
originating from the interactions. These terms are obtained
[28,29] by solving the consistency conditions (26).

2.3 Thermodynamics in the mixed-phase model

The parameters of the MP model are fixed [28, 29] by re-
quiring that the lattice results for thermodynamical quan-
tities in the pure gauge and two flavor QCD are repro-
duced. In this study the quark–gluon interaction param-
eters γ = 0.62 and A1/(3γ+1) = 250 MeV were obtained.
The same parameters are assumed to be valid also for the
interactions with strange quarks.

In Fig. 6 we compare the thermodynamical properties
of the MP and 2PC models. The energy density and pres-
sure in the 2PC model shows the typical behavior for a sys-
tem with a first order phase transition: an abrupt change
in the energy density at T = Tc and a smooth change in
the pressure. In the MP model on the other hand, both ε
and p vary continuously with temperature. The transition
temperature in the MP model, Tc ≈ 160 MeV, is defined
by the maximum of the heat capacity (see insert in Fig. 6).

In Fig. 7 the ratio p/ε is shown for different values of
the total baryon number density in the three models under
consideration. A common feature of these models is that
for finite baryon densities they all exhibit a clear threshold
behavior. The threshold is shifted to higher ε with increas-
ing nB . However, in contrast to the ideal hadron gas, both
the MP model and 2P model have the softest point in the
EoS, i.e., a minimum [26] of the function p(ε)/ε. A par-
ticular feature of the MP model is that even for nB = 0
the softest point is not very pronounced and located at a
relatively low energy density: εSP ≈ 0.45 GeV/fm3. This
is consistent with the lattice result [41]. In the MP model,
the softest point is gradually washed out with increasing
baryon density and vanishes completely for nB � 0.5n0.
This is, however, not the case in the 2P models, where
one finds a pronounced softest point at large energy den-
sity εSP ≈ 1.5 GeV/fm3, which depends only weakly on
the baryon density nB ; see Fig. 7. Finally, in the InHG
model as well as in the relativistic ideal hadron gas there
is obviously no softest point in the EoS.

The differences in the thermodynamical properties of
the above models will be also reflected in the expansion dy-
namics of a thermal fireball created in heavy ion collisions.
The effect of these differences on strangeness production
and evolution will be explored in the following sections.
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Fig. 7. The ratio of the pressure (p) to the energy density (ε) as a function of ε. The results are for different values of a total
baryon density (nB) and for three models of the EoS

3 Strangeness production

3.1 Strangeness content in equilibrium

The conservation of strangeness in the coexistence region
of quarks and hadrons implies that the total number of
strange and antistrange quarks are equal. However, the
s–s̄ content in the individual phases may differ from zero.
The strangeness content of the quarks in the mixed or
plasma phase is characterized by two ratios: ρs/ρs̄ and
Ds = (ρs + ρs̄)/ρpl (see (28)). The second ratio gives the
strangeness fraction in the plasma.

In Fig. 8 the ratio ρs/ρs̄ is shown as a function of µB for
a fixed plasma fraction α. For α ∼ 1 the ratio ρs/ρs̄ ≈ 1
for almost all values of µB . However, if α << 1, that is
when the volume in the mixed phase is mostly occupied by
hadrons, the separation of strange and antistrange quarks
is clearly seen in Fig. 8. This is mainly because the had-
ronic component of the mixed phase is dominated by the
kaons, while the hyperons are suppressed due to their large
masses. This strangeness excess through kaons is compen-
sated by the creation of s-quarks in the plasma. The re-
sults in Fig. 8 are in qualitative agreement with [22] where
the 2PIN model without higher mass resonances was em-
ployed. The contribution of higher mass resonances results
in an increase of ρs/ρs̄ for (µB/3)H ≈ 400–500 MeV.

In Fig. 9 the strangeness composition in an equilibrium
system is compared for two different models. In the bag
model EoS and at high temperature (T ∼ 140 MeV) the
ρs/ρs̄ ratio decreases when the baryon density inside the
Gibbs mixed phase approaches the plasma boundary. How-
ever, for moderate temperatures (T ∼ 80 MeV), the ratio
ρs/ρs̄ < 1 and it increases with nB . The above behavior
is a direct implication of the simultaneous conservation of
strangeness and the baryon number. If these conservation

Fig. 8. Ratio of strange to antistrange quark densities in a
quark–gluon plasma calculated along the hadronic boundary.
The results are for the PC model calculated with different
values of the volume fraction (α) occupied by a quark–gluon
plasma

laws are decoupled [22], then this behavior at low temper-
atures is not seen.

In the MP model the ρs/ρs̄ > 1 for all values of the
baryon density. For a fixed temperature the ρs/ρs̄ ratio is
seen in Fig. 9 to gradually decrease with increasing density.
Its values are noticeably higher than in the 2P model. In
both models, however, the strangeness separation effect
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Fig. 9. The ρs/ρs̄ ratio for quark component and strangeness fraction (Ds) for unbound quarks as a function of baryon density.
The results are shown for different temperatures and for two EoS. The plasma boundary is marked by arrows. Note the factor
1/5 in the MP model at T = 80 MeV

(strangeness destillation) is stronger when the system is
closer to the hadronic boundary, i.e. where there is small
admixture of quarks. For the 2P model this corresponds
to the existence of a small blob of plasma while in the MP
model a homogeneous admixture of unbound quarks and
gluons with small concentration.

Above the hadronic phase boundary, the nB-depend-
ence of Ds in the 2PC model is similar to that in the
MP model. The strangeness fraction in the MP model is
the largest below the hadronic boundary and maximal in
baryon free matter. In Fig. 9 we note a jump in DS which
corresponds to a jump in strange particle multiplicity when
crossing the phase boundary; a similar jump is observed
in the baryon number.

From the above discussion, it is clear that the strange-
ness content and its distribution in the transition region
from the quark–gluon plasma to the hadronic phase is
strongly model dependent. It is effected by the order of
the phase transition and the strength and the form of the
interactions between the constituents. These differences
are particularly evident at moderate values of the temper-
ature and baryon density. This is just the region which is
traversed by an expanding system created in heavy ion col-
lisions on its way towards the chemical freeze-out. Thus,
one could expect that the order of the phase transition
and particular strangeness dynamics could manifest itself
in observables in heavy ion collisions.

3.2 Strangeness evolution in expansion dynamics

To study the possible influence of the EoS on observables
in heavy ion collisions, we have to describe the space-time
evolution of a thermal medium that is created in the initial
state. This is conveniently done within a hydrodynamical
model. The EoS is an input for constructing the energy-
momentum tensor, which is needed in the hydrodynamical
equations.

To solve the hydrodynamical equations for a given ex-
perimental set-up one needs to specify the initial condi-
tions. The initial volume, the entropy and the baryon num-
ber densities in the collisions are modeled within QGSM
transport code [42]. The predictions of this model are con-
sistent with the results obtained within the RQMD and
UrQMD transport codes.

We assume that, in the center of mass frame, the ini-
tial state is a cylinder of radius R = 5 fm and Lorentz
contracted length L = 2R/γc.m.. This initial state corre-
sponds to the time when the centers of the colliding nuclei
just have passed the point of full overlap.2 We neglect the
transverse expansion and assume that the hydrodynamical
evolution of the fireball is described by a one-dimensional
isentropic expansion of the scaling type in the longitudinal
direction. In this approximation the entropy and baryon
density decrease inversely proportional to the expansion
time. The values of all other thermodynamic quantities

2 A detailed description of the procedure to fix the initial
conditions in heavy ion collisions can be found in [28–31].
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Fig. 10. A compilation of the chemical freeze-out parameters from [9,44,45] obtained with the hadron resonance gas partition
function at different beam energies (filled dots, squares and triangles). The smooth dashed curve is the universal freeze-out
curve of fixed 〈Ehad〉 / 〈Nhad〉 � 1 GeV from [44]. Also shown are dynamical trajectories for central Au–Au collisions calculated
within different models (the interacting hadron gas model (InHG), the mixed-phase model (MP), the ideal hadron gas model
(IdHG) and the thermodynamically consistent two-phase model (2PC)). The empty circles near the end of each trajectory
correspond to the freeze-out condition of fixed energy density, εf � 0.135 GeV/fm3

are obtained from the EoS at each temporal step (see for
example [43]).

In Fig. 10 we show the fireball evolution trajectories
for central Au–Au collisions in the T–µB plane for differ-
ent collision energies and for different EoS. The chemical
freeze-out parameters obtained [8,9,44,45] within the sta-
tistical model at different collision energies are also shown
in this figure. Clearly, the chemical freeze-out parameters
from SIS up to RHIC are well described by the univer-
sal condition of fixed energy/particle, 〈Ehad〉 / 〈Nhad〉 �
1 GeV [44,46].

The dynamical trajectories show a strong dependence
on the properties of the EoS. In the MP model there is a
turning point seen in all trajectories, i.e. the point where
∂T/∂µB changes sign. The existence of such a point is a
general feature of the MP model and is directly related to
the appearance of two limiting regimes:
(i) At high temperatures and in the ultra-relativistic limit,
mq → 0, the thermodynamic potential Ω = −V p can be
obtained analytically from (9) and (12):

Ω = −V (
a1T

4 + a2T
2µ2

B + a3µ
4
B

)
. (38)

The entropy per baryon

s

nB
=

∂Ω/∂T

∂Ω/∂µB
=

2a1 + a2

(µB

T

)2

a2

(µB

T

)
+ a3

(µB

T

)3 , (39)

is conserved along trajectories defined by µB/T = const.
Thus, in the high temperature limit, an isentropic expan-
sion is characterized by a linear relation between T and µB .
(ii) At intermediate temperatures, the system can be ap-
proximated by a Boltzmann gas (22) of non-relativistic
nucleons. In this case the entropy in the dilute gas ap-
proximation is given by

S = − gNV

(2π)3

∫
d3p [f ln f + (1 − f) ln(1 − f)]

≈ NB

[
1 −

∫
d3p f ln f∫

d3p f

]
, (40)

with the distribution function

f = exp[(µB −mB − p2/2mB)/T ].

In this temperature range, conservation of the entropy per
baryon implies that

s

nB
=

5
2

+
mB − µB

T
= const . (41)

Thus, for intermediate temperatures, we again find a linear
relation between T and µB , but with a negative slope.
The different behavior of µB(T ) at high and intermediate
temperatures implies that there is a turning point in the
fireball expansion trajectories, as seen in Fig. 10.

The dynamical trajectories calculated in the MP model
pass quite close to the phenomenological freeze-out points.
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For all collision energies, the turning point is located on
the universal freeze-out curve of fixed energy/particle. This
fact has been noticed already in [47] for the MP model with
two light quarks. The contribution of strange quarks and
the requirement of strangeness conservation modifies the
dynamical expansion path of the fireball. This is partic-
ularly evident for Elab � 10 AGeV where neglecting the
strange quarks gives rise to a visible shift of the turning
point towards smaller µB .

In the parameter range below the phenomenological
freeze-out curve the expansion paths in the MP, IdHG as
well as in MP models are quite similar. In the InHG model,
however, there is a small shift toward larger values of µB .
This agreement indicates that in the final stage the expan-
sion path depends only weakly on details of the equation
of state. The dynamical path is, to a large extent, deter-
mined by the entropy/baryon and strangeness conserva-
tion which in the hadronic phase puts strong constraints
on the particle composition of the fireball. In this case the
space time evolution and thermodynamics is governed by
those of a gas of weakly interacting resonances, the effec-
tive degrees of freedom in the low temperature phase of
QCD. This may be the reason behind the success of the
non-interacting hadron resonance gas in the description of
bulk observables in heavy ion collisions.

The differences between the various equations of state
in the evolution of the thermal fireball is clearly visible
above the freeze-out curve. In contrast to the MP model,
the IdHG turning points do not correlate with the freeze-
out curve. There is also no softest point in the InHG and

Fig. 11. Time evolution of the ratio of strange to antistrange
quark densities in the plasma component. The MP and 2P
model results are for central Au–Au collisions at different beam
energies

IdHG model. The dynamical trajectories within the 2P
bag models exhibit a characteristic re-heating regime in
the phase coexistence region. For this model, the expan-
sion trajectory closely follows the phase boundary in this
regime, as shown in Fig. 2. At SPS energies and above,
the hadronic end of the intermediate coexistence region in
the T–µB plane (the so-called “hottest hadronic point”) is
close to the phenomenological chemical freeze-out point.
At lower energies there is no such correlation for the 2P
models. For Elab � 10 AGeV the initial state is in the
phase coexistence region.

The question of strangeness separation in heavy ion
collisions addressed in [22] for a static system can be rean-
alyzed in our approach for a dynamically evolving fireball.
The results are shown in Fig. 11 for Au–Au collisions at
different bombarding energies in the 2P and MP models.
In both models ρs/ρs̄ > 1, since there is no chance for
the system to pass through a high density baryonic state
where ρs could be less then unity.

In the 2P model we find that strangeness is separated
to a less degree at the exit point from the phase coexistence
region than found in [22]. On the other hand in the MP
model the system evolves much longer and consequently a
higher degree of strangeness separation is obtained. This
effect is stronger at Elab = 10 AGeV than at 160 AGeV.

So far the differences between various models for the
expansion dynamics were discussed on the level of global
thermodynamical quantities. It is of particular interest to
explore physical observables that are directly measured in
heavy ion collisions. In the following we consider strange
particle multiplicity ratios to discuss the influence of the
equation of state on particle yields. The predictions of the
different models will be compared at thermal freeze-out
where the particle momentum distributions are frozen. We
assume a shock-like freeze-out [48] where the energy and
the total baryonic and strangeness charges are conserved.
The thermal freeze-out conditions are assumed to be de-
termined by the fixed energy density εf ≈ 0.9n0mN =
0.135 GeV/fm3. Below this energy density the system con-
sists of a free streaming gas of non-interacting particles.
The thermal freeze-out points are shown in Fig. 10 by
empty circles on each trajectory for all models and for
all collision energies.

The excitation function of the relative yields of K+

mesons calculated within the MP model is shown in Fig. 12
as triangles. For reference, we also show in this figure the
4π-integrated data for K+/π+ ratio obtained in heavy ion
collisions at different beam energies. The shape of the kaon
excitation function in the MP model is similar to that
seen in the data. However, the absolute values are overes-
timated, especially for the low collision energies. We have
to stress, however, that the models discussed here are still
not quite suitable to be compared with the data. First,
the conservation of electric charge was not taken into ac-
count. The isospin asymmetry is particularly relevant at
low collision energies (below AGS) where it can change
the charge particle multiplicity ratios by up to 20%. Sec-
ond, the hydrodynamical model applied here describes a
longitudinally expanding fireball. This is to a large ex-
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Fig. 12. The K+/π+ ratio as a function of the beam energy.
The data points are from [45]. The lines are the MP model
results obtained in the grand canonical as well as canonical
formulation of strangeness conservation for different parame-
terizations of the volume parameter Vc (see text)

tent sufficient at RHIC energies; however, it may be not
valid at AGS or SIS where transverse expansion cannot
be neglected. Furthermore, only part of the particle mass
spectrum was included with the masses up to 1.6 GeV. At
AGS and higher energies the contributions from heavier
resonances increases the yields of lighter particles. Finally,
the system may be out of chemical equilibrium at some
stages during the evolution from chemical towards ther-
mal equilibrium [49]. Nevertheless, all these effects cannot
account for the observed discrepancy by a factor of five be-
tween the MP model and the data at low collision energies
(Fig. 12). However, the differences may be due to the grand
canonical (GC) treatment of the strangeness conservation
used in the calculations.

In the GC ensemble strangeness is conserved on the av-
erage and is controlled by the strange chemical potential.
Within the statistical approach, the use of the grand canon-
ical ensemble for particle production can be justified only
if the number of produced particles that carry a conserved
charge is sufficiently large. In this case also event-averaged
multiplicities can be treated in a grand canonical formula-
tion. In this approach, the net value of a given charge (e.g.
electric charge, baryon number, strangeness, charm, etc.)
fluctuates from event to event. These fluctuations can be
neglected (relative to the mean particle multiplicity) only
if the particles carrying the charges in question are abun-
dant. Here, the charge is indeed conserved on the average
and a grand canonical treatment is adequate. However, in
the opposite limit of low production yields (as is the case for
strangeness production in low energy heavy ion collisions)
the particle number fluctuation can be of the same order
as the event-averaged value. In this case charge conserva-
tion has to be implemented exactly in each event [8, 50].
In the statistical physics the exact conservation of quan-
tum numbers requires a canonical (C) formulation of the
partition function.

The grand canonical ZGC and canonical ZC
S partition

functions are connected by a cluster decomposition in the
fugacity parameter (λ ≡ exp(µs/T )):

ZGC(T, V, µB , λ) =
s=∞∑

s=−∞
λs ZC

s (T, V, µB) . (42)

The relation (42) can be inverted and the canonical par-
tition function with total strangeness S = 0 is obtained
from

ZC
S=0(T, V, µB) =

1
2π

∫ 2π

0
dφ ZGC(T, V, µB , λ → eiφ) .

(43)
Neglecting the contributions from multistrange hyperons
and assuming Boltzmann statistics the density of kaons in
the C ensemble is given by [51,52]

nC
K = nB

K

S1√S1S−1

I1(x)
I0(x)

, (44)

where the argument of the Bessel function Is(x) is

x ≡ 2
√

S1S−1. (45)

with
Ss = Vc

∑
j

nB
j .

Here the particle density nB
j for hadron species j is given

by (22) with µj = µBbj . The sum is taken over all particles
and resonances carrying strangeness s. The volume Vc is a
model parameter which is interpreted as the strangeness
correlation volume.3 In the equilibrium statistical model
a correlation volume V ≡ V1 � 1.9πApart/2 was found
to reproduce the experimental multiplicity ratios for all
measured particles. In our dynamical approach, Vc is as-
sumed to be the initial volume of the collision fireball
Vc = V0(Elab), and thus is energy dependent.4

From (44) and (22) it is clear that grand canonical and
canonical results for the kaon density are related by the
substitution [7]

exp(µs/T ) → S1√S1S−1

I1(x)
I0(x)

. (46)

Thus, the main difference between C and GC results is
contained in a reduction of the fugacity parameter by the
factor F ≡ I1(x)/I0(x). In the limit of a large volume Vc,
i.e., x → ∞, the ratio F → 1 and the GC and C results
coincide. However, in the opposite limit, x → 0, the factor
F < 1 which leads to a suppression of the strange particle
densities. The canonical suppression depends strongly on
the temperature and the correlation volume. Both these
parameters, in particular the temperature, are dependent
on the collision energy.

3 For a more detailed discussion of the interpretation and
the role of this parameter, see e.g. [8].

4 We thank P. Braun-Munzinger for pointing out this issue.
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Fig. 13. The beam-energy dependence of the strangeness sup-
pression factor for central Au–Au collisions. This factor is cal-
culated within MP model at freeze-out for different parame-
terizations of the correlation volume Vc (see text)

The sensitivity of the suppression factor on Elab and
the correlation volume is shown in Fig. 13. The canoni-
cal suppression factor calculated with Vc = V1 is increas-
ing with collision energy and reaches its asymptotic value
at Elab > 10 GeV. Obviously the magnitude of the sup-
pression is strongly dependent on the correlation volume.
This is shown in Fig. 13 for three different parameteriza-
tions of Vc. Particularly interesting is the behavior of F
for Vc = V0(Elab). Due to the Lorentz contraction the
initial volume is decreasing with increasing collision en-
ergy. At lower collision energies this decrease of the vol-
ume is compensated by an increase of temperature such
that the suppression factor increases with Elab. However
for Elab > 10 GeV there is only a moderate increase of
freeze-out temperature that is not sufficient to overcome a
decrease of V0. Consequently for Elab > 10 GeV the sup-
pression factor starts to decrease with energy.

The amount of canonical suppression at fixed Elab also
depends strongly on the temperature which in turn is de-
termined by the energy density at freeze-out. In the equi-
librium analysis of particle production at SIS [7] the energy
density at chemical and thermal freeze-out was a factor of
three lower than the value used in the present dynamical
study, ε � 0.135 GeV/fm3. Consequently, for Vc = V0 and
for 1 < Elab < 2 GeV the canonical suppression found in [7]
was much stronger than that shown in Fig. 13. We have
not tuned the parameters to reproduce previous results.
In low energy heavy ion collisions the expansion trajec-
tories and the freeze-out parameters will change once the
transverse expansion is taken into account.

In Fig. 12 we show the effect of the canonical suppres-
sion on the K+ excitation function calculated in the MP
model with two different parameterizations of the cor-
relation volume: Vc = V0 and Vc = min(V0, V2) where
V2 = V1/5. As expected, there is a noticeable decrease of
K+ yield due to the exact treatment of strangeness conser-
vation. The suppression of strangeness at energies beyond
AGS is entirely due to the energy-dependent Lorentz con-
traction of the initial correlation volume. In Fig. 12 the
results of a calculation also are presented where the choice

of Vc = min(V0, V2) is optimized to reproduce the K+/π+

data.
The above analysis of K+ excitation function clearly

shows that due to associated strangeness production and
the small production cross sections at low collision energies
one has to implement exact strangeness conservation. In
the following we will implement this concept in all models
and discuss the predictions for strangeness production and
energy dependence. In the calculations we use the corre-
lation volume Vc = min(V0, V2).

In Fig. 14 we calculate relative excitation functions for
different strange mesons and baryons for four hydrodynam-
ical models. The most striking result seen in this figure is
that all models yield very similar results for the strangeness
excitation functions. This is particularly true for the pro-
duction of K+/π+ and Λ/π+ where the results of all mod-
els besides InHG, are hardly distinguishable. Some differ-
ences are seen on the level ofK− excitation function which
are mainly due to larger sensitivity of K−/π− ratio to the
value of the temperature. It is interesting to note that all
models show a maximum in the Λ/π excitation function
for 10 < Elab < 30 GeV. Such a maximum is found also in
equilibrium models [54].

The relative strangeness content of the produced parti-
cles in heavy ion collisions is characterized by the Wròblew-
ski factor [54,55],

λS =
2〈ss̄〉

〈uū〉 + 〈dd̄〉 , (47)

where the quantities in angular brackets refer to the num-
ber of newly created quark–antiquark pairs. The Wròblew-
ski factor is shown in Fig. 15 for different collision energies.
The separate contributions to λS from strange mesons and
baryons as well as its overall value is calculated within the
MP, 2P and IdHG models. The results are compared with
λS obtained in an equilibrium model analysis of experi-
mental data at AGS energies. There is a surprising agree-
ment of all dynamical models on the relative strangeness
content of the fireball at freeze-out. The results are also
consistent with the equilibrium model [54]. However, the
maximum spread of the Wròblewski factor seen in Fig. 15
is broader than previously seen in the equilibrium canon-
ical model [54]. In the dynamical models there is also a
small shift in the position of this maximum towards lower
energy.

4 Summary and conclusions

The main objective of this article was to explore the in-
fluence of the expansion dynamics, the equation of state
and the nature of the deconfinement phase transition on
strangeness production in heavy ion collisions.

We have discussed and formulated different models for
a phase transition in high density QCD matter. The ther-
modynamical properties of these models and the role of
the order of the phase transition as well as the interac-
tions between the particles has been analyzed. We have
addressed the question of the Gibbs construction of the
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Fig. 14. The ratios of 4π-integrated strange particle yields per pion yields for central Au–Au collisions as a function of beam
energy. The compilation of experimental data is taken from [45, 53]. The calculated excitation functions are for different EoS
with the canonical suppression factor

phase transition in the presence of two conserved charges
and emphasized the problem of causality and thermody-
namical consistency.

The strangeness separation in the transition region
from the quark–gluon plasma to the hadronic phase was
also studied. The asymmetry in the relative concentration
of strange and antistrange quarks in the hadronic and
quark–gluon component in the phase coexistence region
was found in all models that exhibit a phase transition.
However, the largest effect was observed in the mixed-
phase model with a crossover-type deconfinement phase
transition.

The differences in equilibrium thermodynamics of the
models were studied on the dynamical level. We have
shown that the hydrodynamical expansion trajectories of
the fireball in the T–µB plane are very sensitive to the

equation of state. We considered the effect of the differ-
ent expansion paths on strangeness production. Our de-
tailed analysis shows that there is almost no sensitivity of
strangeness observables on the equation of state or on the
expansion trajectories. This was demonstrated for several
strange particle excitation functions.

To relate the model predictions with experimental data
we have extended our study to a canonical formulation
of strangeness conservation. We have discussed the phe-
nomenological limitations of our dynamical models and
the possible extension needed to provide a quantitative
description of the observed particle yields in heavy ion
collisions.

Exact strangeness conservation substantially reduces
the strange particle yields in heavy ion collisions forElab <
10 GeV. For higher energies a moderate suppression is also
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Fig. 15. The Wròblewski ratio λs as a function of beam energy
for central Au–Au collisions. The contributions of mesons and
baryons are shown separately. The points at AGS energies are
from [45]

found if the beam-energy dependence of the volume pa-
rameter Vc is taken into account. We have shown that
the assumption that Vc is the volume of the initially pro-
duced Lorentz contracted fireball may lead to a negative
slope in the energy dependence of the K+/π+ ratio. How-
ever, within the models considered, the almost singular
behavior of the excitation function near Elab < 20 GeV
for the K+/π+ ratio found recently by the NA49 collabo-
ration [56] was not reproduced. Simplified hydrodynamics
with the assumption of a shock-like particle freeze-out in
heavy ion collisions results in a very smooth behavior of
the strange particle excitation functions.
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